Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1336246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515751

RESUMO

Introduction: To understand the immune system within the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC), it is crucial to elucidate the characteristics of molecules associated with T cell activation. Methods: We conducted an in-depth analysis using single-cell RNA sequencing data obtained from tissue samples of 19 NSCLC patients. T cells were classified based on the Tumor Proportion Score (TPS) within the tumor region, and molecular markers associated with activation and exhaustion were analyzed in T cells from high TPS areas. Results: Notably, tetraspanins CD81 and CD82, belonging to the tetraspanin protein family, were found to be expressed in activated T cells, particularly in cytotoxic T cells. These tetraspanins showed strong correlations with activation and exhaustion markers. In vitro experiments confirmed increased expression of CD81 and CD82 in IL-2-stimulated T cells. T cells were categorized into CD81highCD82high and CD81lowCD82low groups based on their expression levels, with CD81highCD82high T cells exhibiting elevated activation markers such as CD25 and CD69 compared to CD81lowCD82low T cells. This trend was consistent across CD3+, CD8+, and CD4+ T cell subsets. Moreover, CD81highCD82high T cells, when stimulated with anti-CD3, demonstrated enhanced secretion of cytokines such as IFN-γ, TNF-α, and IL-2, along with an increase in the proportion of memory T cells. Bulk RNA sequencing results after sorting CD81highCD82high and CD81lowCD82low T cells consistently supported the roles of CD81 and CD82. Experiments with overexpressed CD81 and CD82 showed increased cytotoxicity against target cells. Discussion: These findings highlight the multifaceted roles of CD81 and CD82 in T cell activation, cytokine production, memory subset accumulation, and target cell cytolysis. Therefore, these findings suggest the potential of CD81 and CD82 as promising candidates for co-stimulatory molecules in immune therapeutic strategies for cancer treatment within the intricate TME.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Antígenos CD/metabolismo , Linfócitos do Interstício Tumoral , Interleucina-2/metabolismo , Microambiente Tumoral , Neoplasias Pulmonares/metabolismo , Citocinas/metabolismo , Tetraspaninas/metabolismo , Tetraspanina 28 , Proteína Kangai-1/metabolismo
2.
Cancers (Basel) ; 15(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37760631

RESUMO

(1) Background: This study investigated whether polo-like kinase 4 (PLK4) is a suitable therapeutic target or biomarker for lung adenocarcinoma (LUAD). (2) Methods: We acquired LUAD data from The Cancer Genome Atlas (TCGA) database through the UCSC Xena data portal. Gene expression, clinical, survival, and mutation data from multiple samples were analyzed. Gene enrichment analysis, unsupervised clustering of PLK4-related pathways, and differential gene expression analyses were performed. Additionally, correlations, t-tests, survival analyses, and statistical analyses were performed. (3) Results: PLK4 expression was higher in LUAD tissues than in normal tissues and was associated with poor prognosis for both overall and progression-free survival in LUAD. PLK4 was highly correlated with cell-proliferation-related pathways using Gene Ontology (GO) biological process terms. PLK4 expression and pathways that were highly correlated with PLK4 expression levels were upregulated in patients with LUAD with the TP53 mutation. (4) Conclusions: PLK4 expression affects the survival of patients with LUAD and is a potential therapeutic target for LUAD with TP53 mutations.

3.
Front Chem ; 10: 998013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545214

RESUMO

Among cancer cells, indoleamine 2, 3-dioxygenase1 (IDO1) activity has been implicated in improving the proliferation and growth of cancer cells and suppressing immune cell activity. IDO1 is also responsible for the catabolism of tryptophan to kynurenine. Depletion of tryptophan and an increase in kynurenine exert important immunosuppressive functions by activating regulatory T cells and suppressing CD8+ T and natural killer (NK) cells. In this study, we compared the anti-tumor effects of YH29407, the best-in-class IDO1 inhibitor with improved pharmacodynamics and pharmacokinetics, with first and second-generation IDO1 inhibitors (epacadostat and BMS-986205, respectively). YH29407 treatment alone and anti-PD-1 (aPD-1) combination treatment induced significant tumor suppression compared with competing drugs. In particular, combination treatment showed the best anti-tumor effects, with most tumors reduced and complete responses. Our observations suggest that improved anti-tumor effects were caused by an increase in T cell infiltration and activity after YH29407 treatment. Notably, an immune depletion assay confirmed that YH29407 is closely related to CD8+ T cells. RNA-seq results showed that treatment with YH29407 increased the expression of genes involved in T cell function and antigen presentation in tumors expressing ZAP70, LCK, NFATC2, B2M, and MYD88 genes. Our results suggest that an IDO1 inhibitor, YH29407, has enhanced PK/PD compared to previous IDO1 inhibitors by causing a change in the population of CD8+ T cells including infiltrating T cells into the tumor. Ultimately, YH29407 overcame the limitations of the competing drugs and displayed potential as an immunotherapy strategy in combination with aPD-1.

4.
Front Oncol ; 12: 821391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356198

RESUMO

A recently developed treatment strategy for lung cancer that combines immune checkpoint inhibitors with chemotherapy has been applied as a standard treatment for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), and it has improved the outcomes of chemotherapy. Maintenance treatment with anti-PD-1 antibody (aPD-1) enhances the effect of immunochemical combination therapy and improves therapeutic efficacy, which contributes toward a significant improvement in patient survival rates. The AXL receptor tyrosine kinase (AXL), which is expressed in tumor cells, plays an essential role in the resistance of cancers to chemotherapy and immunotherapy, and stimulates signaling associated with epithelial-mesenchymal transition (EMT) in metastatic cancer. AXL is thus an attractive target for controlling resistance to anti-tumor therapies. In this study, we examined the effect of AXL inhibitors on immune activation and tumor growth in TC1 and C3PQ mouse tumor models, in the context of clinical immunotherapy/chemotherapy and maintenance treatment, using an aPD-1 with/without pemetrexed. To determine the optimal timing for administration of SKI-G-801, an AXL inhibitor, we investigated its anti-tumor effects based on inclusion at the immunochemotherapy and maintenance therapy stages. We also performed flow cytometry-based immune profiling of myeloid cells and lymphoid cells at different points in the treatment schedule, to investigate the immune activation and anti-tumor effects of the AXL inhibitor. The addition of SKI-G-801 to the immune checkpoint inhibitor and chemotherapy stage, as well as the maintenance therapy stage, produced the best anti-tumor results, and significant tumor growth inhibition was observed in both the TC1 and C3PQ models. Both models also exhibited increased proportion of effector memory helper T cells and increased expression of CD86+ macrophages. Especially, regulatory T cells were significantly reduced in the TC1 tumor model and there was an increase in central memory cytotoxic T cell infiltration and an increased proportion of macrophages with high CD80 expression in the C3PQ tumor model. These results suggest increased infiltration of T cells, consistent with previous studies using AXL inhibitors. It is expected that the results from this study will serve as a stepping stone for clinical research to improve the existing standard of care.

5.
Clin Transl Immunology ; 11(1): e1364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35003748

RESUMO

OBJECTIVES: AXL-mediated activation of aberrant tyrosine kinase drives various oncogenic processes and facilitates an immunosuppressive microenvironment. We evaluated the anti-tumor and anti-metastatic activities of SKI-G-801, a small-molecule inhibitor of AXL, alone and in combination with anti-PD-1 therapy. METHODS: In vitro pAXL inhibition by SKI-G-801 was performed in both human and mouse cancer cell lines. Immunocompetent mouse models of tumor were established to measure anti-metastatic potential of SKI-G-801. Furthermore, SKI-G-801, anti-PD-1 or their combination was administered as an adjuvant or neoadjuvant in the 4T1 tumor model to assess their potential for clinical application. RESULTS: SKI-G-801 robustly inhibited pAXL expression in various cell lines. SKI-G-801 alone or in combination with anti-PD-1 potently inhibited metastasis in B16F10 melanoma, CT26 colon and 4T1 breast models. SKI-G-801 inhibited the growth of B16F10 and 4T1 tumor-bearing mice but not immune-deficient mice. An antibody depletion assay revealed that CD8+ T cells significantly contributed to SKI-G-801-mediated survival. Anti-PD-1 and combination group were observed the increased CD8+Ki67+ and effector T cells and M1 macrophage and decreased M2 macrophage, and granulocytic myeloid-derived suppressor cell (G-MDSC) compared to the control group. The neoadjuvant combination of SKI-G-801 and anti-PD-1 therapy achieved superior survival benefits by inducing more profound T-cell responses in the 4T1 syngeneic mouse model. CONCLUSION: SKI-G-801 significantly suppressed tumor metastasis and growth by enhancing anti-tumor immune responses. Our results suggest that SKI-G-801 has the potential to overcome anti-PD-1 therapy resistance and allow more patients to benefit from anti-PD-1 therapy.

6.
Yonsei Med J ; 63(1): 42-55, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34913283

RESUMO

PURPOSE: Agonists of the stimulator of interferon genes (STING) play a key role in activating the STING pathway by promoting the production of cytokines. In this study, we investigated the antitumor effects and activation of the systemic immune response of treatment with DMXAA (5,6-dimethylxanthenone-4-acetic acid), a STING agonist, in EML4-ALK lung cancer and CT26 colon cancer. MATERIALS AND METHODS: The abscopal effects of DMXAA in the treatment of metastatic skin nodules were assessed. EML4-ALK lung cancer and CT26 colon cancer models were used to evaluate these effects after DMXAA treatment. To evaluate the expression of macrophages and T cells, we sacrificed the tumor-bearing mice after DMXAA treatment and obtained the formalin-fixed paraffin-embedded (FFPE) tissue and tumor cells. Immunohistochemistry and flow cytometry were performed to analyze the expression of each FFPE and tumor cell. RESULTS: We observed that highly infiltrating immune cells downstream of the STING pathway had increased levels of chemokines after DMXAA treatment. In addition, the levels of CD80 and CD86 in antigen-presenting cells were significantly increased after STING activation. Furthermore, innate immune activation altered the systemic T cell-mediated immune responses, induced proliferation of macrophages, inhibited tumor growth, and increased numbers of cytotoxic memory T cells. Tumor-specific lymphocytes also increased in number after treatment with DMXAA. CONCLUSION: The abscopal effect of DMXAA treatment on the skin strongly reduced the spread of EML4-ALK lung cancer and CT26 colon cancer through the STING pathway and induced the presentation of antigens.


Assuntos
Células T de Memória , Neoplasias Cutâneas , Animais , Imunoterapia , Macrófagos , Proteínas de Membrana/genética , Camundongos
7.
Eur J Cancer ; 153: 179-189, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34182269

RESUMO

OBJECTIVE: Anti-programmed death (PD)-1 therapy confers sustainable clinical benefits for patients with non-small-cell lung cancer (NSCLC), but only some patients respond to the treatment. Various clinical characteristics, including the PD-ligand 1 (PD-L1) level, are related to the anti-PD-1 response; however, none of these can independently serve as predictive biomarkers. Herein, we established a machine learning (ML)-based clinical decision support algorithm to predict the anti-PD-1 response by comprehensively combining the clinical information. MATERIALS AND METHODS: We collected clinical data, including patient characteristics, mutations and laboratory findings, from the electronic medical records of 142 patients with NSCLC treated with anti-PD-1 therapy; these were analysed for the clinical outcome as the discovery set. Nineteen clinically meaningful features were used in supervised ML algorithms, including LightGBM, XGBoost, multilayer neural network, ridge regression and linear discriminant analysis, to predict anti-PD-1 responses. Based on each ML algorithm's prediction performance, the optimal ML was selected and validated in an independent validation set of PD-1 inhibitor-treated patients. RESULTS: Several factors, including PD-L1 expression, tumour burden and neutrophil-to-lymphocyte ratio, could independently predict the anti-PD-1 response in the discovery set. ML platforms based on the LightGBM algorithm using 19 clinical features showed more significant prediction performance (area under the curve [AUC] 0.788) than on individual clinical features and traditional multivariate logistic regression (AUC 0.759). CONCLUSION: Collectively, our LightGBM algorithm offers a clinical decision support model to predict the anti-PD-1 response in patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Aprendizado de Máquina/normas , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade
8.
Cancers (Basel) ; 11(6)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159342

RESUMO

Photothermal therapy can serve as an alternative to classic surgery in the treatment of patients with cancer. However, using photothermal therapy can result in local overheating and damage to normal tissues. Therefore, it is important to determine effective heating conditions based on heat transfer. In this study, we analyzed laser-tissue interactions in gold nanoparticle (GNP)-enhanced photothermal therapy based on the theory of heat transfer. The thermal behavior inside tissues during photothermal therapy was analyzed using numerical analysis. The apoptosis ratio was defined by deriving the area having a temperature distribution between 43 °C and 50 °C, which is required for inducing apoptosis. Thermal damage, caused by local heating, was defined using the thermal hazard value. Using this approach, we confirmed that apoptosis can be predicted with respect to tumor size (aspect ratio) and heating conditions (laser intensity and radius) in photothermal therapy with a continuous-wave laser. Finally, we determined the effective apoptosis ratio and thermal hazard value of normal tissue according to tumor size and heating conditions, thereby establishing conditions for inducing maximal levels of cell apoptosis with minimal damage to normal tissue. The optimization conditions proposed in this study can be a gentle and effective treatment option for photothermal therapy.

9.
J Nanosci Nanotechnol ; 19(12): 7721-7728, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31196281

RESUMO

In this study, the morphological effects of ZnO on the antimicrobial and deodorant activities of synthetic fibers were investigated. Three different polyethylene terephthalate (PET)/ZnO filaments were prepared by incorporating various ZnO nanostructures (rods, plates, and spheres) into PET filaments via a melt-spinning process. The antimicrobial activity of the as-prepared fibers was evaluated by the shake-flask method using two types of bacteria (Staphylococcus aureus and Klebsiella pneumoniae). The deodorant activity of the as-prepared fibers was evaluated by the gas detection tube method. All the PET/ZnO filaments exhibited excellent antimicrobial activity with a bacterial reduction value of 99.9%. The PET/ZnO rod filament showed the best deodorant performance of 60.0%. Both the antimicrobial and deodorant activities of the PET/ZnO filaments were influenced by the morphology of ZnO. However, the morphology of ZnO had a different effect on each functionality of the PET/ZnO filaments. The antimicrobial activity of the PET/ZnO filaments was mainly affected by the physical properties of ZnO rather than its morphology. By contrast, the deodorant activity of the PET/ZnO filaments was highly influenced by the morphology of ZnO.


Assuntos
Anti-Infecciosos , Desodorantes , Óxido de Zinco , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Polietilenotereftalatos/farmacologia , Óxido de Zinco/farmacologia
10.
ACS Nano ; 10(8): 7476-84, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27472431

RESUMO

We report label-free electrical detection of enzymatic reactions using 2-D nanofluidic channels and investigate reaction kinetics of enzymatic reactions on immobilized substrates in nanoscale-confined spaces. Trypsin proteolysis is chosen for demonstration of the detection scheme. When trypsin cleaves poly-l-lysine coated on the surface of silica nanochannels, the resulting change of surface charge density can be detected by monitoring the ionic conductance of the nanochannels. Our results show that detection of such surface enzymatic reactions is faster than detection of surface binding reactions in nanochannels for low-concentration analytes. Furthermore, the nanochannel sensor has a sensitivity down to 5 ng/mL, which statistically corresponds to a single enzyme per nanochannel. Our results also suggest that enzyme kinetics in nanochannels is fundamentally different from that in bulk solutions or plain surfaces. Such enzymatic reactions form two clear self-propagating reaction fronts inside the nanochannels, and the reaction fronts follow square-root time dependences at high enzyme concentrations due to significant nonspecific adsorption. However, at low enzyme concentrations when nonspecific adsorption is negligible, the reaction fronts propagate linearly with time, and the corresponding propagation speed is related to the channel geometry, enzyme concentration, catalytic reaction constant, diffusion coefficient, and substrate surface density. Optimization of this nanochannel sensor could lead to a quick-response, highly sensitive, and label-free sensor for enzyme assay and kinetic studies.


Assuntos
Enzimas/metabolismo , Nanotecnologia , Adsorção , Catálise , Eletricidade , Cinética , Tripsina
11.
Rev Sci Instrum ; 80(10): 103702, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19895065

RESUMO

We introduce the concept of scanning flow-impedance microscopy (SFIM) which is an imaging technique based on hydrodynamics. Using a simple experimental setup including a mass flow controller and a manometer, the operating principle of SFIM is validated under atmospheric pressure and temperature conditions. Experimental results show that the flow impedance strongly depends on the relative distance between a probe and a specimen. SFIM micrographs of microscale patterns with various linewidths are presented.

12.
J Colloid Interface Sci ; 247(2): 490-3, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16290490

RESUMO

Fluorosilicone copolymers of random, block, and graft with both perfluoroalkyl and silicone-containing side chains were synthesized, and their surface properties and surface modification effects on PVC film were compared. It can be confirmed that the fluorosilicone copolymers of random, block, and graft exhibit very low surface free energies of 9-13 dyn/cm, depending on the perfluoroalkyl group content and their molecular structure. The inherent surface free energies of the fluorosilicone copolymers are significantly influenced by their molecular structure and perfluoroalkyl group content. It can also be found that the fluorosilicone copolymers are very effective for lowering surface free energy. The surface free energy of a copolymer/PVC blend strongly varies with perfluoroalkyl group content as well as molecular structure. The molecular structure of a fluorosilicone copolymer is as important as the perfluoroalkyl group content for their inherent surface free energies and surface modification of other polymers.

13.
J Colloid Interface Sci ; 235(1): 130-134, 2001 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11237451

RESUMO

Coating films on glass substrate were prepared by sol-gel process using alkoxide solutions containing perfluoroalkylsilane (PFAS) and tetraethoxysilane (TEOS). The physical properties of the coating films were characterized by SEM, FT-IR, and XRD. And their surface properties were investigated by measuring contact angles and atomic compositions. Transparent coating films with smooth surface and uniform thickness could be obtained. The contact angles of the coating films for water and methylene iodide are extremely high, at 118 degrees and 97 degrees, respectively, and their surface free energies are about 9.7 dyn/cm. It was found that the water-repellent glass prepared is very hydrophobic and exhibits excellent water-repellency. Hydrophobic perfluoroalkyl groups are preferentially enriched to the outermost layer at the coating film-air interface, and two layers probably exist in the coating film. The upper layer oriented toward the air is composed of mainly perfluoroalkyl groups originating from PFAS, and the lower layer is composed of mainly -OSiO- groups originating from TEOS. The heat treatment after drying step cannot influence the surface enrichment of the perfluoroalkyl group. The hydrolysis reaction should be more completely done before the dip coating step to obtain lower surface free energy. The burning temperature should be less than 300 degrees C because the perfluoroalkyl group begins to decompose from this temperature. Copyright 2001 Academic Press.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...